公司新闻

M2M相控阵探伤仪 超声表面契合法SAUL 原理

M2M相控阵探伤仪  超声表面契合法SAUL 原理
Surface-Adapting ULtrasound (SAUL)


M2M研发出的SAUL技术通过对脉冲延迟的实时控制,能够使其发射的入射波阵面与待检工件的复杂表面(内外弯角)平行。这样以来我们能够将工件表面几何形状对检测的结果的影响降到*低。利用此技术,我们能够使用同一个相控阵探头对一个表面复杂的工件的平面部分,内外弯角部分进行无盲区检测。结合全自动化扫查装置,此技术大大的提高复杂工件的检测效率。

此技术基于对表面波波型的迭代处理技术,系统自动计算出工件当前表面几何形状,然后根据此结果对延迟法则进行实时的计算。如此以来,检测时我们无需预先知道工件表面的几何状况便能发出自动与此面契合的波阵面。此技术在航空复合材料的检测中优势体现的尤为突出。

我们通过下图来对SAUL技术的一般原理做一个简单的介绍。如下图左所示,一个平面线型相控阵探头被设置于一个复合材料工件R角区域的上方。目的是使用水浸法对R角区域进行有效的检测。

**步,探头发出一与探头表面平行的平面波。每个单元晶片将同时对表面反射波进行接收,获得的B扫图如下图中。我们可以观察到受结构弧形表面的影响声波的能量从中间向两边逐次降低,信号之间的相应时间差也真实的反映了结构的几何外形。但是由于受表面外形影响,此平面波在大部分区域声波相对于工件表面是斜入射,能渗透进工件内部的能量相对较少,底面波响应很弱。我们很难对工件内部的缺陷进行有效的检测。

SAUL_principe

第二步,将是对**步采集到的数据进行实时的处理,通过分析表面波相应的时间来计算出工件的几何外形,此计算结果可用来算出新的发射与接收的延迟法则,依此法则探头进行新一次信号发射,产生出能更接**行与工件表面的波阵面。通过三到四次迭代,我们便可得到非常理想的结果。如上图右所示,通过四次迭代之后,我们得到的B扫图表面波响应已接近一条直线,说明声波是平行与工件表面入射的。而且相对图中**次响应,表面波响应能量更高,分布更均匀;底面波也比**次相应更明显。下次在实施SAUL迭代过程中,探头发射的声场的模拟。我们可以观察到得到的波阵面一次次的更加接近工件的几何外形。

Wave form evaluation

此法对其他类型的曲面也同样适用,如下图:

SAUL principe 2

SAUL算法已被成功植入 M2M 的 MultiX 系列系统,所有的迭代计算都在电子芯片中实时完成,在完成100%无盲区检测的同时也保障了工业检测的高效率。通过与加拿大自动化检测集成商 Mecnov 的合作此技术已经成功被运用到EADS的复合材料生产基地的工业检测中。在未来此技术还有望扩展到其他领域的无损检测中,比如涡轮机的叶片或其他有不规则表面的金属工件。

京公网安备 11010802025952号